Grid-Interop

Mind the Opportunities
Towards a Smart Grid

Culture of Architecture

William Cox

Cox Software Architects LLC
wtcox@CoxSoftwareArchitects.com

Agenda

Introduction

Sound Architectural Approach
What Makes a Good Spec?
Design Goals and Techniques
An Example: Open ADR
Summary

For More Information

Parting Thought

Copyright © 2008 Cox Software Architects LLC

All Rights Reserved.

http://www.CoxSoftwareArchitects.com

Grid-Interop 20081112 Page 1



Introduction

* Who am I?
— Consulting enterprise software architect

— Elected to OASIS Technical Advisory Board

* OASIS is the leading eBusiness, Web services, and XML
vocabulary standards venue

— Skilled at building standards and products from ideas
to adoption

— Business, marketing, and technical background
— http://www.CoxSoftwareArchitects.com/energy

Sound Architectural Approach

* Think through the

— Requirements

— Security
— Things that might happen
— Things that you think will happen

* You can’t always revise standards quickly
— With capital investments have to last years
— Firmware updates can extend product life

» Conformance clauses and interop testing
— Best trialed as specification is built

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 2



What Makes a Good Spec?

* “You know it when you see it”

* Apply sound architectural principles while
building and evolving

* Clear and easy to understand
— At least as easy as the business domain...

 Clear what to implement and how to test
interoperability and conformance
— Not the same thing!

Can’t Anticipate All Uses

* You can’t tell what some bright person may (try
to) do with your architecture

* Still, try to anticipate

— Who foresaw the internet and eCommerce
explosions?

— Hindsight is excellent, foresight isn’t
* Mitigate problems by following design principles
* Don’t try to solve only today’s problems

— Know where you want to be in 5 years

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 3



Copyright © 2008 Cox Software Architects LLC
All Rights Reserved.

Encourage Next Steps

* Plan where you can for
— Change
— Compatible evolution
 Consider versioning
— Data structures
— XML schemas
— Protocols

— Interfaces

 Consider monitoring of use

Service Orientation Good

Composition Good

Policy Separation Good
Business Models Hard
Allow for Symmetry

Strive for Consistency
Reuse Where You Can

Design Goals and Techniques

http://www.CoxSoftwareArchitects.com
Grid-Interop 20081112 Page 4



Service Orientation Good

Enterprise software state of the art

Reuse, Repurpose, Realign

Service definitions
— Large chunks often have better reuse

Tie business value and actions to technical

Growing base of tooling and governance

Architectural level of services difficult to get
right

— May take experimentation, apply experience

Composition Good

» Small specifications can be composed
» Smaller specifications are more easily understood

* Permits architecture with similar interaction in
differing environments

— Accommodate differences by composing (e.g.)

security
— WS-SecureConversation from WS-Security and WS-
ReliableMessaging
Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com

All Rights Reserved. Grid-Interop 20081112 Page 5



Policy Separation Good

* Separating policy from mechanism
— Mechanism is the same, policies can differ
— Allows reuse with differing policies
* See OASIS Standards
— WS-SecurityPolicy
— Other policy frameworks
* Consider along with composition

— Policy assertions allow variable application for
differing circumstances

Business Models Hard

* Understanding (and explaining) the business
model is hard to do well

» Appropriate architectural level for the
components and the interfaces/interactions

 Architecture must support the business model

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 6



Allow for Symmetry

* The producer may be the consumer

— Today, tomorrow, with a different commodity
— Micro Grids, rooftop solar are producers
— Micro Grids are consumers
* Avoid un-needed asymmetry
— REST is stateless; need for scalability
— But requiring an open connection adds state
— Data models can be symmetric; can protocols?

Strive for Consistency

* Reusing an architecture (or piece) makes your
solution easier to use
— Don’t do things differently just because you can
— Easier implementation of new interfaces
— Don’t diverge without excellent reasons

* Design patterns drawn from
— Other specifications in the domain

— Common uses

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 7



Reuse Where You Can

* Don’t reinvent, reference

 If you’re not expert in an area, consult those who
are
— May find opportunities for reuse, extensibility
— Open standards work benefits from wider audience,

wider input

* Don’t be embarrassed to use architectural and
interaction models from elsewhere
— IPR considerations
— Better to be the same than 90% the same!

An Example: OpenADR (1)

* Questions to ask...

* Extensible or not? And at what cost?

— Firmware updates? Network updates? Consistency of
partially updated environment?

e Can the communications mechanism...
— Be used both ways?

— How symmetric is the communication?
* Data rates, data payloads,

— What uses can we think of for the communications?
— What uses might someone else think of?

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 8



An Example: OpenADR (2)

 Architectural level? Is this for a building, an
enterprise, or something else?

* Who are the actors/principals?

* Is it symmetric? Can producer/consumer be
reversed?

— They will be in the future, if not today
— Certainly within the lifetime of the specification

* Versioning of schemas and interfaces

* Conformance and interoperability

Summary

» By taking an architectural approach we
— Plan for extensibility
— Improve usability

— Broaden the application domain

— Allow for varying levels of complexity and service
» Composition, policy

— Consider issues of
e Symmetry
» Compatibility

— Enable reuse of services and architecture

— Can better evaluate a specification or standard

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 9



For More Information

* Email me wtcox@CoxSoftwareArchitects.com

» Talks and tutorials on architecture, free
newsletter signup at
http://www.CoxSoftwareArchitects.com/

* Energy Focus Area information at
http://www.CoxSoftwareArchitects.com/energy

* Other talks in the Architecture track at this
conference

* OpenADR http://drre.Ibl.gov/openadr/

Parting Thought

A doctor can bury his mistakes but an architect

can only advise his clients to plant vines.

Frank Lloyd Wright

Let’s do the best we can to avoid vine planting.

Copyright © 2008 Cox Software Architects LLC http://www.CoxSoftwareArchitects.com
All Rights Reserved. Grid-Interop 20081112 Page 10



