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Introduction

* Who am I?
— Consulting enterprise software architect

— Elected to OASIS Technical Advisory Board

* OASIS is the leading eBusiness, Web services, and XML
vocabulary standards venue

— Skilled at building standards and products from ideas
to adoption

— Business, marketing, and technical background
— http://www.CoxSoftwareArchitects.com/energy

Sound Architectural Approach

* Think through the

— Requirements

— Security
— Things that might happen
— Things that you think will happen

* You can’t always revise standards quickly
— With capital investments have to last years
— Firmware updates can extend product life

» Conformance clauses and interop testing
— Best trialed as specification is built
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What Makes a Good Spec?

* “You know it when you see it”

* Apply sound architectural principles while
building and evolving

* Clear and easy to understand
— At least as easy as the business domain...

 Clear what to implement and how to test
interoperability and conformance
— Not the same thing!

Can’t Anticipate All Uses

* You can’t tell what some bright person may (try
to) do with your architecture

* Still, try to anticipate

— Who foresaw the internet and eCommerce
explosions?

— Hindsight is excellent, foresight isn’t
* Mitigate problems by following design principles
* Don’t try to solve only today’s problems

— Know where you want to be in 5 years
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Encourage Next Steps

* Plan where you can for
— Change
— Compatible evolution
 Consider versioning
— Data structures
— XML schemas
— Protocols

— Interfaces

 Consider monitoring of use

Service Orientation Good

Composition Good

Policy Separation Good
Business Models Hard
Allow for Symmetry

Strive for Consistency
Reuse Where You Can

Design Goals and Techniques
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Service Orientation Good

Enterprise software state of the art

Reuse, Repurpose, Realign

Service definitions
— Large chunks often have better reuse

Tie business value and actions to technical

Growing base of tooling and governance

Architectural level of services difficult to get
right

— May take experimentation, apply experience

Composition Good

» Small specifications can be composed
» Smaller specifications are more easily understood

* Permits architecture with similar interaction in
differing environments

— Accommodate differences by composing (e.g.)

security
— WS-SecureConversation from WS-Security and WS-
ReliableMessaging
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Policy Separation Good

* Separating policy from mechanism
— Mechanism is the same, policies can differ
— Allows reuse with differing policies
* See OASIS Standards
— WS-SecurityPolicy
— Other policy frameworks
* Consider along with composition

— Policy assertions allow variable application for
differing circumstances

Business Models Hard

* Understanding (and explaining) the business
model is hard to do well

» Appropriate architectural level for the
components and the interfaces/interactions

 Architecture must support the business model
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Allow for Symmetry

* The producer may be the consumer

— Today, tomorrow, with a different commodity
— Micro Grids, rooftop solar are producers
— Micro Grids are consumers
* Avoid un-needed asymmetry
— REST is stateless; need for scalability
— But requiring an open connection adds state
— Data models can be symmetric; can protocols?

Strive for Consistency

* Reusing an architecture (or piece) makes your
solution easier to use
— Don’t do things differently just because you can
— Easier implementation of new interfaces
— Don’t diverge without excellent reasons

* Design patterns drawn from
— Other specifications in the domain

— Common uses
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Reuse Where You Can

* Don’t reinvent, reference

 If you’re not expert in an area, consult those who
are
— May find opportunities for reuse, extensibility
— Open standards work benefits from wider audience,

wider input

* Don’t be embarrassed to use architectural and
interaction models from elsewhere
— IPR considerations
— Better to be the same than 90% the same!

An Example: OpenADR (1)

* Questions to ask...

* Extensible or not? And at what cost?

— Firmware updates? Network updates? Consistency of
partially updated environment?

e Can the communications mechanism...
— Be used both ways?

— How symmetric is the communication?
* Data rates, data payloads,

— What uses can we think of for the communications?
— What uses might someone else think of?
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An Example: OpenADR (2)

 Architectural level? Is this for a building, an
enterprise, or something else?

* Who are the actors/principals?

* Is it symmetric? Can producer/consumer be
reversed?

— They will be in the future, if not today
— Certainly within the lifetime of the specification

* Versioning of schemas and interfaces

* Conformance and interoperability

Summary

» By taking an architectural approach we
— Plan for extensibility
— Improve usability

— Broaden the application domain

— Allow for varying levels of complexity and service
» Composition, policy

— Consider issues of
e Symmetry
» Compatibility

— Enable reuse of services and architecture

— Can better evaluate a specification or standard
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For More Information

* Email me wtcox@CoxSoftwareArchitects.com

» Talks and tutorials on architecture, free
newsletter signup at
http://www.CoxSoftwareArchitects.com/

* Energy Focus Area information at
http://www.CoxSoftwareArchitects.com/energy

* Other talks in the Architecture track at this
conference

* OpenADR http://drre.Ibl.gov/openadr/

Parting Thought

A doctor can bury his mistakes but an architect

can only advise his clients to plant vines.

Frank Lloyd Wright

Let’s do the best we can to avoid vine planting.
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